[1]郭丝锦 黄美玲 曹小花 王廷.人工智能语音随访系统在乳腺癌日间手术患者随访中的应用分析[J].中国卫生质量管理,2024,31(10):024-29.[doi:10.13912/j.cnki.chqm.2024.31.10.06]
 GUO Sijin,HUANG Meiling,CAO Xiaohua.Application Analysis of Artificial Intelligence Voice Follow-up System in the Follow-up of Breast Cancer Patients undergoing Day Surgery[J].Chinese Health Quality Management,2024,31(10):024-29.[doi:10.13912/j.cnki.chqm.2024.31.10.06]
点击复制

人工智能语音随访系统在乳腺癌日间手术患者随访中的应用分析()
分享到:

《中国卫生质量管理》[ISSN:1006-7515/CN:CN 61-1283/R]

卷:
第31卷
期数:
2024年10期
页码:
024-29
栏目:
特别关注
出版日期:
2024-10-15

文章信息/Info

Title:
Application Analysis of Artificial Intelligence Voice Follow-up System in the Follow-up of Breast Cancer Patients undergoing Day Surgery
作者:
郭丝锦 黄美玲 曹小花 王廷
中国人民解放军空军军医大学西京医院
Author(s):
GUO SijinHUANG MeilingCAO Xiaohua
Xijing Hospital,the Air Force Medical University
关键词:
人工智能语音随访系统电话随访乳腺癌日间手术延续护理
Keywords:
Artificial IntelligenceVoice Follow-up SystemTelephone Follow-upBreast CancerDay SurgeryContinuing Nursing
分类号:
R197.323;R737.9
DOI:
10.13912/j.cnki.chqm.2024.31.10.06
文献标志码:
B
摘要:
目的构建乳腺癌日间手术患者人工智能语音随访系统,评价临床应用效果。方法根据乳腺癌日间手术患者不同阶段的随访要求,设计人工智能语音随访系统。对电话接通率、随访耗时、信息采集完整率、字段提取准确率以及满意度等进行比较分析。结果人工智能语音随访系统共随访432例乳腺癌日间手术患者,共执行1 089条随访记录,电话接通率为90.9%,信息采集完整率为97.7%,字段提取准确率为94.9%;第一次回访平均耗时(2.1±0.42)min,第二次回访平均耗时(1.6±0.45)min,第三次回访平均耗时(1.9±0.33)min,生存随访平均耗时(2.1±0.32)min,大大缩短了随访时间。结论人工智能语音随访系统可为乳腺癌日间手术患者搭建持续、快捷的医患沟通路径,提高了随访率,节约了人力成本,提高了服务质量。
Abstract:
ObjectiveTo construct an artificial intelligence voice follow-up system for breast cancer patients undergoing day surgery and evaluate its clinical application effect.MethodsAccording to the follow-up requirements of breast cancer patients at different stages of day surgery, an artificial intelligence voice follow-up system was designed. The telephone connection rate, follow-up time, information collection integrity rate, field extraction accuracy rate and satisfaction were compared and analyzed.ResultsA total of 432 patients with breast cancer undergoing day surgery were followed-up by the artificial intelligence voice follow-up system. A total of 1 089 follow-up records were performed. The telephone connection rate was 90.9 %, the information collection integrity rate was 97.7 %, and the field extraction accuracy rate was 94.9 %.The average time of the first return visit was ( 2.1 ± 0.42 ) min, the average time of the second return visit was ( 1.6 ± 0.45 ) min, the average time of the third return visit was ( 1.9 ± 0.33 ) min, and the average time of survival follow-up was ( 2.1 ± 0.32 ) min, which greatly shortened the follow-up time.Conclusion The artificial intelligence voice follow-up system can build a continuous and fast doctor-patient communication path for breast cancer patients undergoing day surgery, improve the follow-up rate, save labor costs,and improve the service quality.

参考文献/References:

[1]郭丝锦,樊 菁,张聚良,等.乳腺癌全麻日间手术管理模式的临床及社会价值[J].中国医院管理,2023,43(4):57-61.[2]杨芳洁,凌 瑞,郭丝锦.西京医院乳腺癌全身麻醉日间手术全程管理规范[J].华西医学,2020,35(2):202-206. [3]陈毓卓,吴燕,董静,等.国外骨科日间手术延续护理现状对我国的启示[J].护士进修杂志,2023,38(11):1052-1055. [4]刘 言,杨莉琴,张 霞,等.电话随访与智能SMBG管理平台在门诊2型糖尿病患者管理中的应用效果比较[J].现代医药卫生,2020,36(1):122-124.[5]李艳平,尹潘龙,桑 野,等.人工智能在医疗领域应用研究综述[J].长江信息通信,2023,36(1):43-45.[6]龚兴媛,李玉玲,陈爱玲,等.人工智能随访系统在出院患者自我行为管理方面的应用研究[J].宁夏医学杂志,2023,45(12):1154-1156.[7]朱 烨,朱立颖,杜 瑞,等.人工智能语音随访系统在2型糖尿病患者中的应用[J].上海护理,2023,23(7):28-31.[8]赵雯雯,李 鹏,卢 菲,等.多发性骨髓瘤患者人工智能随访系统的构建及 应用[J].中华护理杂志,2023,58(15):826-830. [9]樊翊凌,张继东,贾 昊,等.人工智能语音系统在日间手术患者术后随访中的应用[J].华西医学,2019,34(2):64-67.[10]黄一敏,王 淼,魏明月,等.人工智能语音随访系统在儿童日间手术中心的应用[J].中国卫生质量管理,2021,28(3):9-11.[11]苏彩梅,郭丝锦.乳腺癌日间手术全程健康管理模式探讨[J].中国卫生质量管理,2021,28(5):30-33.[12]师庆科,郑 涛.大型三甲医院患者智能随访语音平台设计与应用[J].中国数字医学,2021,16(8):22-27.[13]尹毅丹,杨建萍,孙 宁,等.智能语音随访系统在缺血性卒中二级预防中的应用分析[J].实用临床医药杂志,2023,27(22):1-5.[14]张 悦,田 敏,刘 杰.智能语音服务系统在肝胆外科术后随访的应用[J].护理学杂志,2019,34(20):55-57.[15]徐 磊,刘庆宪,罗 虹,等.智能随访系统在神经内科患者中的应用[J].中医药管理杂志,2021,29(12):51-52.[16]曹 璇,苏瑞芳,祝 贺,等.住院患者出院随访系统的设计与实现[J].科技风,2023(36):4-6.

相似文献/References:

[1]蔡斌孔林羽.基于人工智能的发热门诊信息化随访系统建设[J].中国卫生质量管理,2021,28(06):021.[doi:10.13912/j.cnki.chqm.2021.28.6.06 ]
 CAI Bin,KONG Linyu.Construction of Artificial Intelligence-Based Informatization Follow-Up System for Fever Clinic[J].Chinese Health Quality Management,2021,28(10):021.[doi:10.13912/j.cnki.chqm.2021.28.6.06 ]
[2]蓝淳愉曹磊.基于人工智能的VTE管控平台建设[J].中国卫生质量管理,2021,28(06):079.[doi:10.13912/j.cnki.chqm.2021.28.6.21 ]
 LAN Chunyu,CAO Lei.Construction of VTE Management and Control Platform Based on Artificial Intelligence[J].Chinese Health Quality Management,2021,28(10):079.[doi:10.13912/j.cnki.chqm.2021.28.6.21 ]
[3]于文娟陈麟凤 谈春荣田宗梅陈岩王岩刘璇何欣刘思琪.临床输血智能管理系统应用效果分析[J].中国卫生质量管理,2021,28(06):095.[doi:10.13912/j.cnki.chqm.2021.28.6.25 ]
 YU Wenjuan,CHEN Linfeng,TAN Chunrong.Application Effect Analysis of Intelligent Management System for Clinical Blood Transfusion[J].Chinese Health Quality Management,2021,28(10):095.[doi:10.13912/j.cnki.chqm.2021.28.6.25 ]
[4]丁明明蔡士轩胡龙军侯冷晨钱明平张戟杨佳芳黄伟 史福娴汪佳雯牛培勤陈恳陈跃军.病案首页智能控制系统设计及应用[J].中国卫生质量管理,2021,28(10):062.[doi:10.13912/j.cnki.chqm.2021.28.10.17 ]
 DING Mingming,CAI Shixuan,HU Longjun.Design and Application of Intelligent Control System of Medical Record Home Page[J].Chinese Health Quality Management,2021,28(10):062.[doi:10.13912/j.cnki.chqm.2021.28.10.17 ]
[5]孟岩孙雪梅王雪冀冰心苏金菲靳萍李姗姗.人工智能技术应用于电子病历质控的研究与思考[J].中国卫生质量管理,2021,28(12):063.[doi:10.13912/j.cnki.chqm.2021.28.12.17 ]
 MENG Yan,SUN Xuemei,WANG Xue.Research and Thinking on the Application of Artificial Intelligence Technology in Quality Control of Electronic Medical Records[J].Chinese Health Quality Management,2021,28(10):063.[doi:10.13912/j.cnki.chqm.2021.28.12.17 ]
[6]潘伟华许健穆嘉盛黄宇飞沈鸿楼汪鑫欧阳田岽.应用人工智能提升单病种质量管理水平[J].中国卫生质量管理,2022,29(07):019.[doi:10.13912/j.cnki.chqm.2022.29.7.06 ]
 PAN Weihua,XU Jian,MU Jiasheng.Improving the Quality Management Level of Single Disease Through Artificial Intelligence[J].Chinese Health Quality Management,2022,29(10):019.[doi:10.13912/j.cnki.chqm.2022.29.7.06 ]

更新日期/Last Update: 2024-10-15