方差分析
分享到:
发布人:administrator 发布时间:2016/2/1 9:03:04  浏览次数:1142次
【字体: 字体颜色
方差分析
方差分析(Analysis of variance,简称ANOVA)为资料分析中常见的统计模型,主要为探讨连续型(Continuous)资料型态之因变量(Dependent variable)与类别型资料型态之自变量(Independent variable)的关系,当自变项的因子中包含等于或超过三个类别情况下,检定其各类别间平均数是否相等的统计模式,广义上可将T检定中变异数相等(Equality of variance)的合并T检定(Pooled T-test)视为是方差分析的一种,基于T检定为分析两组平均数是否相等,并且采用相同的计算概念,而实际上当方差分析套用在合并T检定的分析上时,产生的F值则会等于T检定的平方项。
方差分析依靠F-分布为机率分布的依据,利用平方和(Sum of square)与自由度(Degree of freedom)所计算的组间与组内均方(Mean of square)估计出F值,若有显著差异则考量进行事后比较或称多重比较(Multiple comparison),较常见的为Scheffé's method、Tukey-Kramer method与Bonferroni correction,用于探讨其各组之间的差异为何。
在方差分析的基本运算概念下,依照所感兴趣的因子数量而可分为单因子方差分析、双因子方差分析、多因子方差分析三大类,依照因子的特性不同而有三种型态,固定效应方差分析(fixed-effect analysis of variance)、随机效应方差分析(random-effect analysis of variance)与混合效应方差分析(Mixed-effect analaysis of variance),然而第三种型态在后期发展上被认为是Mixed model的分支,关于更进一步的探讨可参考Mixed model的部份。
方差分析优于两组比较的T检定之处,在于后者会导致多重比较(multiple comparisons)的问题而致使第一型错误(Type one error)的机会增高。因此比较多组平均数是否有差异则是方差分析的主要命题。
在统计学中,方差分析(ANOVA)是一系列统计模型及其相关的过程总称,其中某一变量的方差可以分解为归属于不同变量来源的部分。其中最简单的方式中,方差分析的统计测试能够说明几组数据的平均值是否相等,因此得到两组的t测试。在做多组双变量t测试的时候,错误的几率会越来越大,特别是I型错误。因此,方差分析只在二到四组平均值的时候比较有效。